第3章 回路図の作成法(インバータ回路)

本章では、CMOS インバータ回路を作成して、NS-Draw での実際の回路作成方法を学びます。

- 3.1 インバータ回路の入力
- 3.2 インバータ回路のシミュレーションの準備
- 3.3 インバータ回路のシミュレーションの実行
- 3.1 インバータ回路の入力

まず、NS-Drawを再起動、または「ファイル」→「新規作成」を行ってください。メ ニューバーの中の、回路ブロック(アイコン)の挿入をクリックしてください。これは、 文字メニュー中の「入力選択」→「アイコン呼び出し i」でも、同様です。また、画 面上でマウス右クリックで、「アイコン(部品)呼出 i」を選択、または、キーボード から、「i」キーを押しても同様のコマンド実行という意味になります。操作に慣れてき たら、よく使うコマンドは、右クリックまたは、キーボード入力を利用する機会が増え てくると思います。

■ NS-Draw - (新規回路回 (未保存)) ■ J7-Fr(F) 編集(E) 表示(V) 設住(S) 20-F3(W) 入力選択(D) AD7 (H) ■ 金						
			•			

ライブラリパス: C*Design#ns-tools¥example*CHAPTER 2(RC_DELAY)* C*Design#ns-tools¥ns-draw*LIB*basic* C*Design#ns-tools¥ns-draw*LIB*spice* C*Design#ns-tools¥ns-draw*LIB*spice_oldies* bitnsd bitnsd bitsd bitsd capacitor nsd inductor nsd mutualnsd nmos3Mnsd pmos4msd pmos4msd pmos4msd pmos4msd pmos4msd srcV_DCnsd srcV_DCnsd srcV_DCnsd srcV_DCnsd srcV_SINnsd transitienend vccs nsd OK terstice	アイコン選択 & 挿入		×
k > bjtnsd bjtsubnsd capacitornsd inductornsd inductornsd mutualnsd nmos3nsd nmos3Mnsd nmos4nsd nmos4nsd parasitic_Cnsd parasitic_Ronsd pmos3nsd pmos3Mnsd pmos4nsd srcl_DCnsd srcl_DCnsd srcV.nsd srcV_DCnsd srcV_SINnsd translinensd OK	ライブラリバス: C:¥Design¥ns-tools¥example¥CHAPTER_2(RC_DE C:¥Design¥ns-tools¥ns-draw¥LIB¥basic¥ C:¥Design¥ns-tools¥ns-draw¥LIB¥spice¥ C:¥Design¥ns-tools¥ns-draw¥LIB¥spice_oldies¥	LAY)¥	
bitnsd bit sub nsd capacitor nsd inductor nsd mutual nsd nmos 3 nsd nmos 4 nsd nmos 4 Minsd parasitic Cinsd parasitic Rinsd parasitic RCnsd pmos 3 nsd pmos 4 Minsd resistor nsd srcI DC nsd srcI DC nsd srcV DC nsd srcV DC nsd srcV DC nsd srcV DC nsd srcV SIN nsd transline nsd vccs nsd Mi	<		>
	bitnsd bit_subnsd capacitor.nsd inductor.nsd mutual.nsd nmos3.nsd nmos4.nsd nmos4.nsd parasitic_Cnsd parasitic_RC.nsd parasitic_RC.nsd pmos3.nsd pmos4.nsd pmos4.nsd srcI.DC.nsd srcI.DC.nsd srcV.nsd srcV.nsd srcV.DC.nsd srcV.SIN.nsd transline.nsd vccs.nsd	СК <u> </u>	

図3.1.2 アイコン挿入メニュー

ライブラリパスから spice を選択し、nmos4M.nsd を選択します。これは、基板端子 付きの nMOSFET です。

nMOSFET 素子が呼び出されて、マウスについてきます。移動中は、画面内に残骸のようなものが残ることがありますが、そのまま画面内の十字印の下あたりでクリックし、 配置します。色は、赤で表示されていますが、これは、選択状態にあることを示してい ます。素子上にマウスを置き、そのままドラッグすると、素子を移動できます。また、 素子以外の場所を左クリックすると、選択状態が解除されます。

ここで、図面を ZoomIn(z キー) したり、ZoomOut(SHIFT+z キー) したり、カーソル 移動キー(\leftarrow , \uparrow , \downarrow , \rightarrow) で画面を動かして、図3. 1. 3のような位置に素子が見 えるようにしてください。(v キーを押せば、FitZone になります。これらは、メニュー バーの Z+、Z-、ZF ボタンを使用しても結構です。図面のズームは、メニューバー中の 虫眼鏡を選択して、拡大したいエリアをドラッグすることでもできます。)

ここで、nMOSFET 素子の脇に M=1, W=4u および L=Ln と表示されています。これは、 この nMOSFET のゲート幅 W が 4 (um)、ゲート長 L が Ln (um)の素子が 1 個であること を示しています。 nMOSFET のW値を、例えばW=1um に変えてみましょう。図3の nMOSFET をダブルク リックしてください。図4のような「プロパティー覧」というウィンドウが開きます。

図3.1.4 プロパティ値の変更

プロパティ一覧ウィンドウの中の「Property」項のWに対応する「Value」ボックス に、1uという値を入力してください。入力できたらOKボタンをクリックしてウィンド ウを閉じてください。図5のような表示になるはずです。これで、この nMOSFET のWの 値が1uに変更されました。

図3.1.5 プロパティ値の変更後

次に pMOSFET を呼び出しましょう。上と同様に、まずアイコン挿入によりライブラリ パス spice の pmos4M. nsd を選択して nMOSFET の上あたりに配置します。 pMOSFET のW 値は 2u とします。「プロパティー覧」ウインドウを開き、W項に 2u と入力してくださ い。

図3.1.6 pMOSFET の挿入

次に、二つの MOSFET を配線により、接続します。メニューバーから配線入力(w)を選 択、または右クリック、または w キーを押してください。NS-Draw 回路図上でのマウス 形状がペンの形に変わります。

図3.1.7 メニューバーから配線入力(w)を選択

左クリックで、配線の描画の始点を指定し、左クリックを繰り返すことで、配線の折 れ点を指定できます。配線の終点は、ダブルクリックです。右クリックは、左クリック の1回キャンセルになります。まず、ゲート端子同士を接続して見ましょう。

配線が行われると、ゲート端子についていた赤い四角印がなくなります。この端子に つく赤い四角は、端子が接続されていないことを示す警告サインになっています。また、 作業中に、図面上に残骸のようなものが残るときには、vキーを押してください。適当 なサイズで図面が再描画(Zone Fit)されます。配線直後は配線自身が選択状態になっ ていますので、赤い線になっています。ここで、もし配線に失敗した場合は、一旦、回 路図外の図面内を左クリックして、配線の選択状態を非選択(青い線)にして、Ctr-Z を数回キー入力するか、左ドラッグで間違えた配線を選択して、Delete(DEL キー)し て、再度配線してください。

さらに同様に、wキーを押してドレイン端子同士も接続し、また、各 MOSFET の基板 端子も電源側へ接続して、図9のようにインバータ回路図らしく配線しましょう。

次に、電源端子と入出力端子を配置します。図3.1.9において、メニューから「入 力選択」→「端子」あるいは右クリック、またはメニューバーから「I/0や電源端子の 入力(Shift-T)」を選択します。

ターミナル(端子)	入力	×
─入出力用 ── Input	C Output	C InOut
電源用 〇 Global	-ネッ (yト名用 C net_name
OK		キャンセル

図3.1.10 電源やI/0端子の選択

まず、Input 端子を選び、OK をクリックします。入力端子を配置し、さらに、配置した入力端子をダブルクリックしますと、プロパティー覧として、端子名の入力画面が出てきます。nameのところの値として、inという名前を入力します。

図3.1.11 入力端子の追加

図3.1.12 入力端子名の指定

図3.1.13 入力端子の名前付け

同様に、Output 端子をつけ、名前を out とします。

次に、電源端子ですが、電源用の「Global」という端子を使います。電源とグランド に配置して、それぞれ、Vdd, Gnd と名前付けしてください。

ここで、Vdd 側の電源端子の向きが適当でないので、Vdd 端子を選択して、キーボー

ドから、yを押してください。y軸方向にミラー反転するはずです。同様にxを押せば x 軸、r を押せば90度回転です。x、y、r の3つのキーで、向きを自在に変更できま す。

最後に、「アイコン挿入」から、basic ライブラリ中の、title.nsd を選択して、回路 図の上側に配置します。これで一応回路図は完成です。

図3. 1. 15 title.nsdの配置

メニューバーの「ファイル」→「名前を付けて保存」により、設計データを保存したい場所に、適当な名前をつけてセーブしてください。ここでは、フォルダ C:¥Design¥ns-tools¥example¥CHAPTER_3(INVERTER)の下に inv0. nsd という名前でセーブします。

図3.1.16 インバータ回路のセーブ

セーブが完了すると、配置した直後には空欄だった title.nsd 中の Path: 欄に、こ

の回路図のファイル名がフルパスで表示されます。

3.2 インバータ回路のシミュレーションの準備

次に、この回路をシミュレーションできるようにします。シミュレーションに必要な ドットコマンド等を回路図中に書き込みます。これには、basic ライブラリ中の netlist_line_SPICE.nsd を呼び出します。デフォルトでは、.tran コマンドが記述され ています。回路図中の適当な空き領域に配置して、ダブルクリックして、プロパティを 表示させます。

プロパティー覧		-x
Property	Value	
name	¥	
command	.tran 1n 100n	
param		
ОК	キャンセル	>>>

図3. 2. 1 netlist_line_SPICE のプロパティ

この command 部分を書き換えます。まず、入力欄がやや狭いので、キャンセルボタン 右横の「>>」ボタンを押して欄の幅を広げます。

次に、command 部分を、DC 解析を行うために、

.dc VIN OV 1.8V 0.01V

と変更します。(VIN は入力信号用の電源名です。)

図3.2.2 シミュレーション用記述の埋め込み

続いて、回路動作に必要な電源に対する netlist_line_SPICE.nsd を3つ追加します。 既に回路図上に配置した netlist_line_SPICE.nsd を左クリックして選択し、C キーを 押すことによってコピーできます。入力電源として VIN、電源電圧として2つの DC 電 圧源 VVDD と VGND を定義します。

VIN in O DC OV

VVDD Vdd 0 DC 1.8V

VGND Gnd 0 DC 0V

次に、MOSFET のモデルパラメータファイルをインクルードします。

.include MOS_018.bsim3

さらに、データ出力するノード名(in, out)を.print または、.save 文で指定しま す。 .print/.save 文の中に「i(電源名)」または「電源名#branch」と記述しますと、 該当する電源素子に流れる電流値を出力させることができます。

.print V(in) V(out) I(VGND)

また、2つのノード間の電圧差分や、2つの電源間の電流差分を出力したいときは、ノ ード a とノード b の間の差電圧なら、v(a, b), 電源 v1 と電源 v2 の差電流は i (v1, v2) で 指定できます。

.print V(out, in) I(VVDD, VGND)

最後に、MOSFET 内のパラメータで定義したゲート長 Ln, Lp と、拡散層容量計算に使う LD, WD に数値を指定します。

.param Ln=0.18u Lp=0.18u LD=0.4u WD=0u

以上で、シミュレーションできる回路図になりました。

図3.2.3 シミュレーション可能な回路図

シミュレーション実行前に、ネットリスト作成&外部コマンドウィンドウに戻り、 「Make Netlist」ボタンを押してネットリストを確認してみましょう。

図3.2.4 NS-Drawから生成された SPICE ネットリスト

ネットリストにおいて、「. include MOS_018. bsim3」という記述は、トランジスタモ デルパラメータファイル MOS_018. bsim3 をネットリストにインクルードするという記 述 (相対パス指定)です。ファイルを正しくインクルードさせるためには、ネットリス トが作成されるディレクトリに、指定したファイルが存在しなければなりません。 (. include で絶対パス指定をすることもできます。)

3.3 インバータ回路のシミュレーションの実行

「ネットリスト作成&外部コマンド」から、ns-spice の実行ボタンを押して、シミ ュレーションを実行します。

結果を VS32 で表示させる際、ノード in, out の電圧値を左側の軸に、Gnd 電流値を 右側の軸に表示させるようにしてみましょう。そのためには、VS32 を立ち上げて、「デ ータ表示設定画面」が出たときに、v(in), v(out)については左側のチェックボックス に、i(vgnd) については右側のチェックボックスにチェックを入れます(図22の赤丸 の箇所)。

データ	7表示設定	\frown		×
1	v(in)		11	↓
2	v(out)		12	J
3	i(vgnd)		13	Ţ
4			14	J
5		Ţ	15	J
6		Ţ	16	J
7		Ţ	17	↓
8		Ţ	18	J
9		Ţ	19	J
10		↓ ↓	20	↓ .
	₩描画区間:	0.00~ 1.80	Y描画区間: 0.00~ 1	.80
	← 終了	自動線種割付け	スケール最適化 全選択	非選択│→

図3.3.1 データ表示設定

そこで「終了」ボタンをクリックすると、図3.3.2の波形が表示されます。

参考

SPICE 波形表示ツール VS32 は、デフォルトでは背景が黒くなっています。VS32 の 表示を画面コピーして文書に貼り付ける場合などには、背景が白い方が見やすいかも しれません。背景を白くするには、VS32 メニューの「描画設定」→「描画条件」を選 択し、「バックグランド」項目の「白」にチェックを入れてください

図3.3.3 描画条件設定

図3.3.2において、青実線がインバータ入力ノード in の電圧、赤実線がインバ ータ出力ノード out の電圧で、それぞれ左側の縦軸に数値が表示されています。一方、 ピーク値を持つ実線が Gnd に流れ込む電流で、こちらは右側の縦軸に数値が表示され ています。VS32 ウィンドウ右下に表示されているマウスカーソルの値を読み取ること によって、論理しきい値(ノード out が Vdd/2 = 0.9V になるときのノード in の電 圧) は、約0.87V であることがわかります。

次に、トランジェント解析をしてみましょう。netlist_line_SPICE.nsdの.dc文と、 入力信号 VIN の定義を下記のように変更します。

.tran 0.01n 3n

VIN in 0 PWL (On 0 1n 0 1.05n 1.8V 2n 1.8V 2.05n 0V 100n 0V)

ここで、VIN 行の入力の際に、netlist_line_SPICE.nsd の command 欄が狭いので、 「プロパティー覧」ウィンドウ右下の「>>」の部分をクリックすることにより、欄を広 げて入力します(図3.3.5)。

プロパティー覧			
Property	Value		
name	#		
command	.tran 0.01n 3n		
param			
ОК	++)tu >>		

図3.3.4 .tran 行の入力

プロパティー覧		×
Property	Value	
name	#	
command	VIN in 0 PwL (0n 0 1n 0 1.05n 1.8V 2n 1.8V 2.05n 0V 100n 0V)	
param		
ОК	キャンセル	>>>

図3.3.5 VIN行の入力(欄を延長する)

図3.3.6に、.dc、VINをトランジェント解析用に書き換えた回路図を示します。

図3.3.6 トランジェント解析用記述

ここでシミュレーションを実行してみてください。次のような波形が得られるはずです。

図3.3.7 シミュレーションの結果 (.tran 解析)

波形の立ち上がり/立ち下がり部分を拡大表示させてみましょう。波形のある部分を 拡大表示するには、まず、拡大したい部分の左上でマウス左クリックし、右下までドラ ッグします。すると、そのマウスで指定された領域に、画面上に四角が表示されます。

図3.3.8 シミュレーション結果の拡大:領域指定

次にツールバーの「ズーム(Z)」→「イン(I)」を選択すると、波形が拡大表示されま す。こうすることで、波形の変わり目の詳細部分を確認することができます。

図3.3.9 シミュレーション結果の拡大:拡大後