第8章 .measure による SPICE シミュレーション結果の CSV ファイル化

ns-spice では、.measure コマンドを用いた波形データの計測が可能です。.measure での計測結果は、CSV形式のファイルにも出力されますので、データの解析が容易です。

NS-Draw - [inv1_TRAN (N:¥Doc¥Nanodesign¥ns-tools¥1	30Vexample¥CHAPTER_8(DotMeasure)¥inv1_TRAN.nsd)]	
▶ 774W(F) 編集(E) 表示(V) 設定(S) 942×19(W) 人力進動 D c ² □ ④ □ ▶ 1 № № № № № № № № □ C:	(D) % 도유는 / 다스 포 ID N 너 카 바 타 @	∧⊮7"(H) <u> </u>
NS-Draw Drawing n	akamura@7-PC 2011 / 04 / 16	
Path: N:¥Doc¥Nanodesign¥r Last Modified : 2011/04/16	ns-tools¥130¥example¥CHAPTER_8(DotMeasure)¥inv1_TRAN.nsd 06:51:34 nakamura@7-PC	
Vdd	(spice) # .param Vdd=1.8V Ln=0.18u Lp=0.18u LD=0.4u WD=0u Tcyc=1ns	Tr=50p Tf=50p
	(spice) # VIN in 0 PULSE (0 'Vdd' 0 'Tr' 'Tf' 'Tcyc/2-Tr-Tf' 'Tcyc')	
	(spice) # VVDD Vdd 0 DC 'Vdd'	
	(spice) # VGND Gnd 0 DC 0V	
	(spice) # .tran 'Tcyc/100' 'Tcyc*5'	
in DDout	(spice) # .lib mos_b4.skw TT (spice) # .include mos_b4.mdl	
W=1u	(spice) # .print v(in) v(out) I(VGND)	
	(spice) # .measure tran Tdr trig v(in) val='vdd/2' fall=2 targ v(out) val='Vdd/ (spice) # .measure tran Tdf trig v(in) val='vdd/2' rise=2 targ v(out) val='Vdd/ (spice) # .measure tran Tdelay param='(tdr+tdf)/2' ((spice) # .measure tran Tdelay param='(tdr+tdf)/2' ((spice) # .measure tran Tdelay param='(tdr+tdf)/2' (2' rise=1 /2' fall=1
Gnd	(spice) # .option autostop)	
• • • • • • • • • • • • • • • • • • •		

図1 . measure のサンプル回路図 (inv1_TRAN. nsd)

図1のc:¥Design¥ns-tools¥example¥CHAPTER_8(DotMeasure)¥inv1_TRAN.nsd の例で は、インバータの遅延時間、1周期の平均電流値を.measure により求めています。こ の例では、インバータのゲート遅延時間は、立ち上がりと立下りの遅延時間をそれぞ れ.measure で求め、その平均をとることで求めています。コマンドプロンプト内に表 示される ns-spice によるシミュレーションの実行結果をリスト1に示します。 各.measure の結果が、数値として表示されています。

また、図1の例では、.option autostop が設定されているので、.tran 行で指定され たシミュレーションの終了時間(5nsec)より前に、すべての.measure が終了した時点 (5nsec の 30.0%の時点)で、過渡解析を終了しています。

リスト1 ns-spice シミュレーションの実行結果(コマンドプロンプト)

*****	******	***	***	*****	*****
** NS-Spice.	Ver.	Mar	18	2010	(Nanodesign Corp.) **
******	******	***	***	*****	******
>>Operationg Point(OP) A >>Transient Analysis in 30.0% Auto Stopped.	nalysis Progres	s Fir ss :	nisł	ned.	

*	Result of .measure*
tdr	= 2.0290709983e-011
tdf	= 2.2386197167e-011
tdelay	= 2.1338453575e-011
idd	= -1.9822238709e-005
*	*

C: ¥Design¥ns-tools¥example¥CHAPTER_8 (DotMeasure) >

利用できる.measure コマンドの書式については、本章末の「.measure の書式について」を参照してください。

次に、.measure を用いてシミュレーション結果をデータ化する方法について説明し ます。図2に、インバータの論理しきい値電圧を求める回路例を示します。pMOSFETの ₩値は、

.param Wp='@{1u, 3u, 0.25u}'

と指定されていますが、これにより、ns-spiceは、Wpの値を、1uから3uまで、0.25u ステップで変化させ、計9回のシミュレーションを連続実行します。実行結果をリスト 2に示しますが、.param Wp=の行が変更されながら、各シミュレーションで.measure が実行されていることが分かります。

図2 .measure のサンプル2 (inv1_DC.nsd) リスト1 ns-spice シミュレーションの連続実行結果(コマンドプロンプト) *************

** NS-Spice. Ver. Mar 18 2010 (Nanodesign Corp.) ** -* Param SCAN Analysis : 1(1) 1/ 9 --* *-___ SCAN Parameters ----* Line:45 -> .param wp='1e-006' *--Result of .measure *--= 0.7923449582 vth *-Param SCAN Analysis : 1(2) 2/ 9 --* *--SCAN Parameters *--------* Line:45 -> .param wp='1.25e-006' *------* *--Result of .measure = 0.8258703817 vth *--Param SCAN Analysis : 1(3) 3/ 9 -*--*----SCAN Parameters ----* Line:45 -> .param wp='1.5e-006' *---*--Result of .measure = 0.854490207 vth *---. (中略) . . Param SCAN Analysis : 1(8) 8/ 9 --*----SCAN Parameters ----* Line:45 -> .param wp='2.75e-006' Result of .measure *--= 0.9529123191 vth Param SCAN Analysis : 1(9) 9/ 9 --* *--*----SCAN Parameters Line:45 -> .param wp='3e-006' *--*--Result of .measure = 0.9670423236 vth *---*--*

*	Param SCAN Analysis : Finished	*	
*	measured.csv is created.	*	
*		*	

このシミュレーションの結果出力される波形ファイルには、9回分のシミュレーション 波形が含まれており、それをプロット図が図3になります。

図3 シミュレーション結果(波形)

このとき、.measureの測定結果は、コマンドプロンプト画面に出力されるだけでなく、同時に、カレントフォルダ内に、measured.csv とうファイル名で、CSV 形式で保存されています。CSV 形式のファイルは、一般的な表計算ソフトでそのまま開くことができます。図4に、Microsoft Excel で measured.csv を開いた例を示します。表計算ソフトのグラフ化機能を利用することで、図5に示すように直ちにデータをグラフ化することができます。

measured.csv - Microsoft Excel _ = X								
U	木-ム	挿入 ペ	ージ レイアウト	支援	データ 校閲	表示	開発 🕜	- 🕫 X
していていていていた。 「話り」 クリッフ	■ ようしょう はいしょう はいしょう いっぽう いっぽう いっぽう いっぽう いっぽう いっぽう いっぽう いっぽ	MS Pゴシック B <i>I</i> <u>U</u> - ヨー <u>ふ</u> - <i>I</i> フォント	× 11 × A [*] A [*] ▼ [™] [™] [™] [™]	= <mark>=</mark> = = = = 律 律 ≫ R番	■ ■ ・ 「」	ふ スタイル セ	□ Σ - 2 □ - 8 □ - 8 2 ↓ 2 - 編集	₩.
	M24	•	(• <i>f</i> *					×
	A	В	С	D	E	F	G	H
1	#Scan	scan1	vth					
2	1	1.00E-06	0.792345					
3	2	1.25E-06	0.82587					
4	3	1.50E-06	0.85449					
5	4	1.75E-06	0.879156					
6	5	2.00E-06	0.9009					
7	6	2.25E-06	0.920174					
8	7	2.50E-06	0.937404					=
9	8	2.75E-06	0.952912					
10	9	3.00E-06	0.967042					
11								
12								
13								
14								
15								
16								
17								
18								_
H + + H measured 2								
עדב	·ド 🛅 🚽				🖽 🔲 🖽	100% 🕞-		

図4 表計算ソフトによる CSV(measured.csv) ファイルのオープン

図5 表計算ソフトによる CSV データのプロット

図6に、アンプのAC解析の例を示します。電源電圧を変化させながら、直流利得 (DCGain) とユニティゲイン周波数 (UnityGainFreq)、位相余裕 (PhaseAtUGF)を計測し ています。シミュレーションを実行すると、measured.csvg生成されますが、さらに表 計算ソフトで読み込んだ後、グラフ化(散布図)することで、図7のような結果が得ら れます。

図 6 AC解析における.measureの例(amp1_AC.nsd)

図7 表計算ソフトを利用したmeasured.csvデータのプロット

図8の例のように、一つのネットリスト内に、@{}指定を2つ以上設けることで、それらの全ての組み合わせのシミュレーションを実行することができます。図8の回路図では、RLを、10K,33K,100Kの3種、CLを10pから、15pまで、1pステップ(6回)、合計で18回のシミュレーションを行います。その結果のmeasured.csvを図9に示します。

図8 スキャンパラメータの2重化

C) 🖬 🤊 -	(~ -) ≠	measured.csv ·	- Microsoft E:	kcel		x
	ホーム 邦	和入 ページ	レイアウト 数式	代 データ 村	「「表示」	開発 🔞 🗕	■ X
「 貼り」 クリッフ	Note: State S	IS Pゴシック 3 <i>I</i> <u>U</u> ~ 日 ~ 3 ~ 4 フォント		■ % 配置 数値	ふ スタイル セ	〕 Σ - 27 	** •
	A1	•	(• <i>f</i> _x	#Scan			≯
	A	В	С	D	E	F	
1	#Scan	scan1	scan2	delay			
2	1	1.00E-11	10k	1.01 E-07			
3	2	1.10E-11	10k	1.11 E-07			
4	3	1.20E-11	10k	1.21 E-07			
5	4	1.30E-11	10k	1.31 E-07			
6	5	1.40E-11	10k	1.41 E-07			
7	6	1.50E-11	10k	1.51 E-07			
8	7	1.00E-11	33k	3.31 E-07			
9	8	1.10E-11	33k	3.64E-07			
10	9	1.20E-11	33k	3.97E-07			
11	10	1.30E-11	33k	4.30E-07			
12	11	1.40E-11	33k	4.63E-07			
13	12	1.50E-11	33k	4.96E-07			
14	13	1.00E-11	100k	1.00E-06			
15	14	1.10E-11	100k	1.10E-06			
16	15	1.20E-11	100k	1.20E-06			
17	16	1.30E-11	100k	1.30E-06			
18	17	1.40E-11	100k	1.40E-06			
19	18	1.50E-11	100k	1.50E-06			_
20							_
21		1 /					¥
14 4	PI (measu III) PI (measu	ured 🖉 🎾			400%		
עדב					100% 🕞		•

図9 measured.csv(図8の回路のシミュレーション結果)

@{ }によるパラメータスキャンの書式について

(1)列挙型:@{a|b|c|d|e|.....}

変更するパラメータ値を@{}の中で、"|"で区切って順に列挙する。

例:.param RL=@{1K|10K|100K|1MEG|10MEG}

シミュレーションは、.param RL=1Kから、.param RL=10MEGまで、5回実行される

(2)区間型1(STEP):@{start, stop, step, STEP}

変更するパラメータ値を@{}の中で、初期値(start)、終値(stop)、ステップ値(step)での順で、 カンマ", "で区切って列挙する。4番目の文字列:STEPは省略可能。

例: CL out 0 @ {10p, 100p, 10p}

シミュレーションは、10p, 20p, 30p, 40p, 50p, 60p, 70p, 80p, 90p, 100pの10回実行される

(2)区間型2(DIV):@{start, stop, ndiv, DIV}

変更するパラメータ値を@{}の中で、初期値(start)、終値(stop)、区間分割数(ndiv)での順で、 カンマ", "で区切って列挙し、最後に、文字列:DIVを記入する。

例: CL out 0 @{0,100p,10,DIV}

シミュレーションは、0p, 10p, 20p, 30p, 40p, 50p, 60p, 70p, 80p, 90p, 100pの111回実行される

(3)区間型3(LOG):@{start, stop, ndiv, LOG}

対数軸上で、当区間となるように値を変更する。@{}の中で、初期値(start)、終値(stop)、10 倍区間辺りの分割数(ndiv)での順で、カンマ", "で区切って列挙し、最後に、文字列:LOGを記入 する。

例: CL out 0 @ {1p, 1u, 4, LOG}

シミュレーションは、1p, 1. 77p, 3. 16p, 5. 62p, 10p, 17. 7p, 31. 6p, 56. 2p, 100pの9回実行される

.MEASUREの書式について

- ・SPICEの結果(波形)から、各種測定を行い数値出力します。
- ・トランジエント解析、AC 解析、DC 解析で利用可能
- ·測定可能項目:
 - 1) 2つの波形の間の遅延、立ち上がり・立下り時間、周期の測定等
 - 2) 波形の平均値、RMS 値、最小値、最大値、peak to peak 値
 - 3) 値の測定: Find-When: 特定の出力値になる時の入力値等
 - 4) 1~3)の測定結果の演算結果

1) 2つの波形の間の遅延、立ち上がり・立下り時間、周期の測定

書式: .MEASURE <TRAN | DC | AC> 出力名 TRIG 設定 TARG 設定 (.MEAS と省略可) TRIG 設定: TRIG 変数名 VAL=trig_val <TD=time_delay> <CROSS=c | LAST> + <RISE=r | LAST> <FALL=f | LAST> または TRIG AT=値 (周波数または時間) TARG 設定: TARG 設定:

TARG 変数名 VAL=targ_val <TD=time_delay> <CROSS=c | LAST> + <RISE=r | LAST> <FALL=f | LAST>

[例 1] .measure tran tpd1 trig at=Ons targ v(out) val=0.5v cross=1 (1波形の遅延時間) out が、立ち上がりまたは立下りで、最初に 0.5v を切る点(時間)を計測し、 tpd1 という名前で出力する。
[例 2] .measure tran tpd2 trig v(in) val=0.5v td=Ins rise=1 targ v(out) val=0.5v fall=1 (2波形間の遅延時間) in が 0.5v になる最初の立ち上がりの時点から、out が 0.5v になる 1回目 (最初) の立下りまでの時間を計測し、tpd2 という名前で出力する。
[例 3] .measure tran tcyc trig v(out) val=0.5v rise=2 targ v(out) val=0.5v rise=1 (波形の周期) out が 0.5v になる2回目の立ち上がりから、次の立ち上がりまでの時間を計測し、 tcyc という名前で出力
[例 4] .measure tran tr trig v(out) val='VP*0.1' rise=last targ v(out) val='VP*0.9' rise=last (波形の立ち上がり時間) out が VP の 10%になる最後の立ち上がりから、90%になるまでの時間を 計測し、tr という名前で出力

2) 波形の区間平均値、RMS 値、最小値、最大値、peak to peak 値

書式: .MEASURE <DC | AC | TRAN> 出力名 <AVG | MIN | MAX | PP | RMS | INTEG> 変数名 <FROM=val> <TO=val> 演算の指定 AVG:平均値、 MIN:最小値 MAX:最小値

```
PP:振幅(=最大値-最小値)
RMS:自乗平均値(root mean square)
INTEG:積分値(=平均値*区間長)
```

```
[例1] .measure tran idd_avg AVG i(vvdd) from=Ons to='tcyc'
(波形の平均値) 電圧源 vvdd の Ons~tcyc の区間の平均電流を求め、idd_avg という名前で出力
する。
[例2] .measure tran out_pp PP v(out) from=Ons to='tcyc'
(波形の Peak-to-Peak 値) out の Ons~tcyc の区間の PP 値を求め、out_pp という名前で出力
する。
```

3) 値の測定:Find-When:特定の出力値になる時の入力値等

```
書式:

.MEASURE <DC|TRAN| AC> 出力名 WHEN 変数名=値 <TD = val>

+ < RISE=r | LAST > < FALL=f | LAST > < CROSS=c | LAST >

または、

.MEASURE <DC|TRAN|AC> 出力名 WHEN 変数名 1=変数名 2 < TD=val >

+ < RISE=r | LAST > < FALL=f | LAST > < CROSS=c| LAST >

または、

.MEASURE <DC|TRAN|AC> 出力名 FIND 変数名 1 WHEN 変数名 2=値 < TD=val >

+ < RISE=r | LAST > < FALL=f | LAST > < CROSS=c| LAST >

または、

.MEASURE <DC|TRAN|AC> 出力名 FIND 変数名 1 WHEN 変数名 2=値 < TD=val >

+ < RISE=r | LAST > < FALL=f | LAST > < CROSS=c| LAST >

または、

.MEASURE <DC|TRAN|AC> 出力名 FIND 変数名 1 WHEN 変数名 2=変数名 3

+ <TD=val > < RISE=r | LAST > < FALL=f | LAST > <CROSS=c | LAST>

または、

.MEASURE <DC|TRAN|AC> 出力名 FIND 変数名 1 WHEN 変数名 2=変数名 3

+ <TD=val > < RISE=r | LAST > < FALL=f | LAST > <CROSS=c | LAST>

または、
```

[例1] .measure ac unity_gain when vdb(out)=0
(ユニティゲイン周波数) 出力 out が、0dbになる周波数を unity_gain という名前で出力する。
[例2] .measure ac phase_margin find vp(out) when vdb(out)=0
(位相余裕) 出力 out が、0dbになる時の、位相(vp(out))を phase_margin という名前で出力する。
[例3] .measure dc threshold find v(in) when v(out)='VP/2'
(論理しきい値) 出力 out が、VP の 1/2 になる時の、V(in)を threshold という名前で出力する。

4) 1~3)の測定結果の演算結果

書式:

.MEASURE <DC|TRAN|AC> 出力名 PARAM='式'

[例 1] .measure tran freq param='1/tcyc' (遅延時間→周波数変換)他の.measure 文で求めた tcyc から周波数を求めて、freq という名前 で出力する。式の中で引用できるのは、他の.measure 文の結果と、.param 文で指定された変数